

In The Name Of ALLAH The Most Merciful & Benevolent Beyond Reckoning

WWW.PAKROADUSERS.COM

or Road use France (NAS

ISLAMABAD

SAFER HIGHWAYS "" PROSPEROUS NATION

3

WWW.PAKROADUSERS.COM

A.R.U.P. ISLAMABAD

ROAD USERS

JOIN ARUP

CDR ® ASIF J KHAWAJA PAKISTAN NAVY

ENVIRONMENT & SAFETY
I C S H E
CHECKLISTS FOR PEPA
VARIOUS COURSES
MEMBERSHIP (INTL & LOCAL)
SOCIAL SECTOR SPECIALIST
AWARDS (INTL & NATIONAL)

Air Quality in Urban areas in Pakistan vs Transport Planning: Issues and Management tools

By Dr. Noman Fazal Qadir of Global Environment Technologies

1

Summary of the Talk

Introduction Pakistan: Basic Information Urban Air Quality (UAQ) in OUR Cities Existing Measures for controlling UAQ Limitations / Constraints Conclusions & Suggestions

INTRODUCTION

- Transport & energy sectors major air polluters. Road sector causes more UAP than any other single human activity.
- Improved technology. has not outweighed the amount of pollution emitted by the share of old technology Vehicles on road.
 - **The ROAD Sector contributes** 1/2 NO_x, 2/3 of CO, & 1/2 HC emissions.
- UAQ be improved by integrating technical & management options & financial incentives including better traffic flow & transport management / planning in the urban areas ,
- Change of technology including fuel substitution & conversion to less polluted fuels (e.g. low Sulphur / Lead fuels, CNG) &
 - Using management tools for effective implementation of laws linking control on emissions & fuel adulteration, strengthening vehicle inspection system & transport priority planning.

Introduction

- Air Pollution emerging environmental concern
- Rapid growth infrastructure + associated transport sector
- Impacts including those on direct health
- Cost benefit analysis of impacts Vs clean up activities
- Pollution control & prevention are not desirable luxuries but necessary parts of sustainability for survival of OUR ecosystem
- AQM emerging field

Pakistan : some statistics

Country /	Population	Vehicular	Importance for air quality		
City	WIIIION	population			
Pakistan	150 +	6.5 million	Road infrastructure, Transport, industry (brick kilns, thermal power		
			plants & steel), municipal solid wastes, climate, Forest / green cover.		
Karachi	14.5	Over 1.7 million	Largest industrial / transport / residential sector Little Forest / green cover.		
Lahore	8.5	562,000 vehicles & ~ 3000 SME / industries	Large industrial / transport / residential sector, climate		

Transport data

Class of Vehicle	Petrol / Diesel /	1980	2000	Rise %
	CNG / LPG			
Delivery Vans	D / P	8503	109722	1190
Motor cycles	P	287622	2113078	634
Cars TAXIS	P/D/CNG/L	148334	748,909	405
CARS	PG P/D/CNG/			
Trucks	D	34193	158645	364
Buses	D	25275	91910	264
Rickshaws	Р	31950	93300	192
Total	Mix	682059	4293836	530

Fuel Consumption & Sectoral oil Consumption 2000-1: Total 19.35 Million Tons

Year	1990-1	1995-6	2000-1
Fuel x MTOE	7.8	15.8	19.35

Sector	% age
Transport	46.2
Power	36.8
Industry	10.9
Others	6.1

Air Pollution in Cities

Ambient Air Quality Parameters (hourly Maximum Concentrations)98-9

Cities	CO ppm	O ₃ ppb	SO ₂ ppb	NO _x ppb
Lahore	8 - 9.2		50 - 80	300 - 450
Rawalpindi	1.2 – 6.2	27 - 62	4.5 - 27	25 - 250
Rawat Vill.	0.8	31	2	< 20

Air Pollution range (1 hr max) in Lahore, Islamabad and Rawalpindi region 1999-2000

City	CO mqq	NO _x ppm	SO ₂ ppb	0 ₃ ppb/	PM₁₀ μg/m ³	μg/m³ TSP
Standards	0.35 USEPA , WHO, EU	110 - NO ₂ 0.053 ppm 0.04-0.06	134 wно 130 USEPA	90 WHO 120usepa 60 : 1 hr	200 Jap. 150:24-hr avg USEPA	200 Japan
Lahore	0.1- 9.4	2.7-499 NO 24–556 NO ₂	2.8 - 211	0.4– 110.6	68.4 - 1535	1975-3045
Rawalpindi	0.3- 6.7	3.5 - 263 NO 19–237NO ₂	7.8 - 61	0.1–59.37	40- 1406.3	675 - 3724
Islamabad	0.1-3.6	10 - 355 NO 30–349 NO ₂	4.3 – 60.2	0.1 - 52.5	80.7 – 937.8	2230- 2385

Pollution Levels

SPM/PM in all the cities are higher than international standards: **WERY HIGH** (about 6 times higher than WHO guidelines) Heavy metals (Arsenic, Lead) in ambient air samples in Lah. & Isb. are higher than International Standards In Lahore, Rawalpindi and Karachi CO, NOx and SO₂ levels are quite high.

Efforts are required to:-

- Collect data for baseline ambient airborne pollution levels
- **Develop linkages** between pollutant concentration Vs source identification & their contribution / quantification,
- **Incorporate** atmospheric dispersion models
- **Initiate** pollution index levels dissipated with weather reports,
- **Implement** feasible mitigating measures to reduce these levels
- Create Awareness amongst ALL stakeholders especially transport sector
- **Reduce the emissions** of these pollutants through Adoption of national guidelines / standards
- **⊠consistency in laws and strong enforcement.**

Sources of Air Pollution

1. Vehicular emissions; important source – its contribution not been quantified as yet.

Total emissions by transport sector is approx 324,473 tons

 NO_x (> 90 % by diesel as source of fuel & 9.5 % by Gasoline: 65 % share of total NO_x emissions by all sectors), 35,362 tons PM (93% by diesel driven veh. & 6.5 % by Gasoline: 2 wheelers, motor cars & tractors are dominant sources; 6 % share of total emissions), 120,871 tons SO_2 (99 % diesel driven vehicles: 16 % of total SO_2 emissions).

1. SMEs in & around cities : geographical concentration

- Industry & power sector : Major users of diesel & furnace oil – thermal power plants, steel etc.
- 3. Municipal Solid waste

Integrated Municipal Solid Waste Management not available.

-- Dawn Friday 7 May 2004 --

Existing mitigation measures

1.FERTS tune up activities :

- 1. 28000 gasoline veh. in 2 years from 15 tune up facilities now 20+ centers
- 2. 94% of veh. tuned are older than 8 years & 6% are younger than 1995 --
- 3. 54% reduction of CO, 462 Tons of CO
- 4. 15% efficiency in fuel consumption –

2.on completion will result in annual reductions in emissions of CO_2 (262,040 tons), SO_2 (1478 tons), lead (7 tons), Hydrocarbons (5659 tons), CO (67343 tons) and SPM (5342 tons).

3. VETS - tested > 18000 (Petrol & Diesel) vehicles and reported reduction 28% in terms of opacity and 77% in CO; PM_{10} emissions from diesel veh. 160 Tons/year and CO from petrol vehicles 913 tons/year.

4. Fuel substitution & clean up : reduction / elimination of Lead in Petrol, reduction of Sulphur in HSD & Fuel oil with a time frame : introduction of catalytic converters ; restriction on 2 stroke engine ; price balancing: shift towards gas driven processes

5. Conversion to CNG : more environment friendly for NOx emissions

- 1. Over 500 CNG stations :
- 2. 210,000 petrol driven veh. (22% of 4 wheeler petrol driven);
- **3.** Replacing 142,000 (13%) Tons / yr of petrol
- 4. Reducing emissions from transport sector.

Fuel related air pollution abatement measures include

VEHICLE INSPECTION PROGRAMS,

BETTER FUEL FORMULATION,

AVAILABILITY OF UNLEADED & LOW SULPHUR FUELS,

PROMOTION / USE OF ALTERNATE FUELS

Creating AWARENESS about responsibility of every Road User towards AIR Quality

SHIFT TO GAS :

COST EFFECTIVE REQUIRE COST SHARING BY INDIVIDUALS NEED A TIME FRAME

Limitations and Constraints

Faulty & inappropriate tuned vehicles on the road
 not-- effective VIM; ineffective introduction of legal, planning & institutional changes for annual VIM system,

• Use of inappropriate fuel mixtures, petroleum adulteration & available fuel mixtures with high Lead & Sulphur contents,

Lack of maintenance culture or no preventive maintenance concept in government, public & private vehicle fleet,

Prioritization of various options for transport sector like Railways, pipelines, roads, flyovers, by passes & mass transport,

 No control / standards / tests are available on fuel / engine performance enhancing techniques / systems,

In the absence of an effective Urban mass transport system in all major cities, traffic problems increasing in heavily populated cities-deteriorating AP concerns.

Traffic planning & flow management-- not linked to reduce UAQ as an imp component

ROAD RELATED PUBLICATIONS

- MOBILE WORLD
- TRAFFIC TIMES
- SHIFA NEWS
- CHEMICAL NEWS
- NATIONAL TRANSPORT NEWS
- **NEWS PAPER** SUPPLEMENTS
- PAKISTAN SPECIAL
 - BY NHA
 - BY NHMP
 - I T P
 - **BY** OTHERS

0 <u>A R U P</u>

- ARSB ENGLISH
- ARSB URDU
- DRIVER HAND BOOK
- DRIVING TECHNIQUES
 - LEAFLETS
- **BOOKLETS**

www.pakroadusers.com

ARUP - Islamabad PO Box 1493, G.P.O Email: arupisbd@hotmail.com Ph: 0300-8544056

Conclusion

1Vehicle Inspection Department be strengthened to improve condition of tuned vehicles.
2Quality control on quality & control on sale of adulterated fuels

3Establishment and implementation of Weigh Bridges to check over-loading (SYSTEM NEEDS TO BE IMPROVED)
4Re-organized Policy / pricing structure for conversion of dirtiest fuel (diesel) to clean fuel i.e. CNG instead of gasoline conversion to CNG, i.e. provision of incentives to diesel driven vehicles,
5Setting up of Vehicles testing & tuning centers & creating ripple effect,

Fuel substitution strategy can be improved,

Fuel substitution policy needs environmental initiatives for effective results, i.e. inter-se prices of HSD-MS Ron 87-CNG be rationalized, tax / duty incentives on CNG kits & equipments, CNG operated buses / trucks be exempted, lucrative bus routes for CNG, lower slab of road tax for CNG vehicles etc,

Undertake road shoulder improvement (concrete pavements or vegetation cover, traffic management like speed reduction & cleaning of road by vacuuming) by municipalities & traffic engineering bureaus for control of suspended SPM / PM,

Introduction of subsidized <u>urban mass transport system</u>

using clean fuel -- reduce traffic burden from city roads / hot spots & as a result improve UAQ.

Prioritize transport planning & flow management on busy roads

Suggestions

- ALL STAKEHOLDERS BE INVOLVED IN CONTINUING CONSULTATION PROCESS TO
 - CREATE AWARENESS ON AIR QUALITY
 - HEALTH, ECONOMIC AND SOCIAL IMPACTS OF UAQ
 - YOUR RESPONSIBILITY OF CARING FOR OTHERS AND CONSERVING ENVIRONMENT FO FUTURE
- AVAILABILITY OF INFORMATION THROUGH PRINT, RADIO, TV AND WEB be Considered
 December 1, 2016

